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Abstract

Vision loss or low vision poses significant challenges to
blind-or-visually-impaired (BVI) individuals when interact-
ing with humans and objects. Although many apps and as-
sistive devices can help them better interact with the en-
vironment and objects, the current state of assistive tech-
nology leaves human-human interaction needs of the BVI
largely unaddressed. Because of this, we introduce a new
wearable mobile assistive platform, named Audi-Exchange,
to address part of the problem. Developed with mobile-
optimized computer vision and audio engineering tech-
niques, Audi-Exchange facilitates a specific area of human-
human interaction by helping the BVI user accurately locate
another person’s hand with spatial audio in order to pass
objects over to or receive objects from the other person.
Audi-Exchange differs from existing academic and commer-
cial assistive technologies in that it is intuitive to use and
non-intrusive when worn. We conduct several experiments
to investigate Audi-Exchange’s effectiveness as an assistive
human-human interaction tool and discover encouraging
results.

1. Introduction
In the workplace or daily life, people need to interact

with other people for various social and working needs.
However, people who are blind or visually impaired (BVI)
have fewer or lesser tools available to them for interacting
with another person, namely those that rely on a clear vi-
sion, such as sensing eye contact or reading body language.
This leads to a harder time when they interact with other
people, especially with those who are not familiar with the
appropriate practices for interacting with BVI individuals.
This can lead to strong real-world impacts. In the work-

place, for instance, visual impairment leads to lower effi-
ciency when interacting and communicating with cowork-
ers and customers, which makes employment more difficult.
Thus, we wish to investigate the feasibility and effective-
ness of developing an assistive device to collect important
visual cues in the environment and relays this information
to the BVI user to help the BVI user interact with other
sighted or BVI people. In this paper, we focus on facili-
tating human-human interaction that involves handing over
of objects. The choice is due to the common situation in
which a BVI person needs to exchange objects with another
person in casual settings as well as in the workplace. For
instance, a BVI person may need to accept a credit card
from someone or offer a cup of water to someone. To
help the BVI with these types of actions, we introduce the
Audi-Exchange wearable mobile assistive platform. When
Audi-Exchange is activated, it collects images from a cam-
era and uses an efficient convolution neural network (CNN)
to detect another person’s hand within the camera’s field
of view. When a hand is detected, Audi-Exchange tracks
its on-camera location and computes its corresponding 3D
direction based on the camera’s optical parameters. Next,
the direction of the target hand is relayed to the BVI user
through stereo headphones as an audio tone, which is pro-
cessed by a head-related transfer function (HRTF) to ap-
pear as coming from the computed direction. In this fash-
ion, we leverage computer vision and audio engineering to
augment or substitute impaired human vision to allow the
BVI to “hear” how they should move when handing over or
receiving an object from another person. We assess Audi-
Exchange’s effectiveness and speed by evaluating it on a
proof-of-concept system consisting of a personal computer
and a camera through several experiments. Lastly, we show
that the system could be ported to work with mainstream
smartphone hardware with a few modifications to the algo-



rithm and discuss the next step for Audi-Exchange.

2. Assistive Technology Landscape
When reviewing academic sources, we found an abun-

dance of research that aimed to develop assistive devices
for the blind and visually impaired. A large portion falls
into the category of electronic travel aids (ETAs), which
are devices that gather information, including nearby ob-
jects and obstacles, about the surrounding environment via
dedicated sensors and transfer it to the user [12, 21]. Some
examples include an RFID-based indoor navigation system
[16], the smart cane [24], the Path Force Feedback Belt [19],
and Substitute Eyes (a hand-worn ultrasonic obstacle warn-
ing device) [11]. Another category that assistive devices
fall into is vision substitution, which is using computer vi-
sion to capture images of the surroundings and transform-
ing the raw visual information into a VI-friendly form, such
as haptics or sounds. Vision substitution devices are more
general-purpose as the information gathered by the system
is less condensed compared to ETAs and relayed in a more
direct and visual form to the VI, with the exception be-
ing text recognition sometimes is performed on images to
read text printed in the surroundings to the user. For in-
stance, FingerReader reads printed text to the user with a
hand-worn camera [22]. Silicon Eyes informs the user of
the color of objects nearby in addition to facilitating out-
door navigation [20]. Overall, however, even though many
assistive devices developed in the academic community ex-
ist that cater to different aspects of BVI assistance, most
have significant drawbacks. Mainly, they can be cumber-
some due to being equipped with complex sensors and can
be intrusive due to needing to be worn at various locations
around the body to effectively gather information. Also,
few papers mention estimated production costs for the the
assistive devices that were proposed, which leads to uncer-
tainty as to whether these devices can be efficiently built
and widely distributed.

There also exists a number of commercial assistive de-
vices for the VI. A major portion are visual enhancement
tools that are designed to be used by the low vision and
not fully blind (perhaps because products made for the low
vision enjoy a larger market compared to those made for
the fully blind). The basic white cane is arguably the most
widely used [10, 14] and affordable tool useful to both
the low vision and fully blind, but its function is limited
by its short range as a direct extension of physical touch.
Advancement in digital imaging sensors led to a variety of
vision enhancement tools that process images of the sur-
roundings using camera sensors and image processing tech-
niques (such as zooming in or boosting contrast). These
include IrisVision [7], Acesight [5], and eSight [6]. Vision
enhancement can also be accomplished with certain acces-
sibility apps running on Google Glasses [1] and Microsoft

Hololens [2]. More advanced solutions exist (such as the
Orcam MyEye 2.0 [8]) where visual information gathered
by the camera sensors is condensed into audio notifications
for text reading, identifying objects, and recognizing faces.
Even though commercial solutions are generally more com-
fortable to use, they are generally very costly. The vision
augmentation devices mentioned above come in the price
range of around $2,000-4,000 USD, with OrCam MyEye
2.0 [8] being the most expensive, costing $4,250 at the time
of writing. Despite having being somewhat common, few
hardware-based assistive solutions made by researchers or
commercial firms are designed to specifically cover the VI’s
human-human interaction needs.

On the other hand, purely software-based solutions can
be run on common smartphones and are more affordable,
with Microsoft Seeing AI and BlindSquare [4, 9] being
popular free vision enhancement and BVI navigation apps.
However, software-based solutions generally also have a set
of significant shortcomings as they tend to (1) lack on-board
visual processing, which leads to functional reliance on on-
line computing, or (2) like the hardware-based solutions
discussed previously, they only facilitate interactions with
the environment while the VI’s human interaction needs are
largely ignored. In summary, despite innovations in mobile
information gathering and visual computing that enabled
many innovative hardware and software assistive solutions
for the BVI, there are still only few that are designed specifi-
cally to help the user have smoother, richer interactions with
other people.

3. Motivation and Merit
Because existing assistive technology for the BVI is of-

ten costly to obtain, uncomfortable to use, and does not ad-
dress human interaction needs (fig. 1), we wish to design
a new assistive device to address these problems. A 2020
comprehensive literature review on wearable device design
reveals that “comfort”, “intuitiveness”, and “mobility” are
the three most desired properties of a wearable device in
terms of user experience [13]. Comfort corresponds to the
minimization of discomfort or pain, so the device should
have a small form factor, be worn on convenient locations,
and have good thermal dissipation [13]. For “intuitiveness”,
the human-computer interaction pattern should be easy to
learn and it should resemble familiar interactive patterns
used in everyday life. For “mobility”, the device should
be lightweight and not obstruct the user’s physical activity.
These three properties are not exclusive to health-sighted
individuals and are arguably more important for blind or
visually impaired individuals because they expect a higher
degree of usability and reliability from assistive wearable
devices. As a consequence, we design a new assistive de-
vice that specifically aims to facilitate human-human inter-
actions while maximizing comfort, intuitiveness, and mo-



Figure 1. Existing assistive device solutions for the BVI can be cumbersome, intrusive (first column), or costly (second column). Also, few
devices are designed to address human-human interaction needs. The three images in the first column read from left to right and then top
to bottom are: the Path Force Feedback Belt [19], Substitute Eyes [11], and FingerReader [22]. The two images in the second column read
from top to bottom are: OrCam MyEye 2 [8] and IrisVision Live! [7], which sell for $4,250 and $2,950 respectively at the time of writing.

bility when worn. We think that good user experience is
critical to the actual rate of adoption in the BVI community
and the social impact that results from it.

Named Audi-Exchange, we propose an assistive plat-
form that uses real-time onboard mobile computer vision
and audio engineering to help the BVI better handle hand-
based human-human interactions. From the user’s perspec-
tive, Audi-Exchange sends spatial audio cues through a pair
of headphones to help the user locate another person’s hand
to hand over or receive an object. For example, it helps
a blind cashier reach over the counter to receive a credit
card from a customer. From a technical standpoint, Audi-
Exchange uses a smartphone’s camera and processor and
mobile-optimized computer vision algorithms to track the
hand motion of a person next to the BVI user and relay
this information in real-time to the BVI user through the
stereo headphones via spatial audio. In this manner, Audi-
Exchange is designed to be responsive, energy-efficient,
intuitive, comfortable, and mobile. Unlike assistive tech-
nologies that rely on dedicated sensors and processors,
all parts of Audi-Exchange can run on mainstream smart-
phones using onboard mobile CPU/GPU/Neural Processor
as the “brain”, the camera as the sensory input, and a pair of
wired or wireless headphones as the sensory output. Regu-
lar headphones be optionally replaced with bone conduction
headphones for better perception of ambient sounds.

4. Method
4.1. Hand Tracking

Figure 2. Some images depicting the performance of the hand
tracking algorithm [23] we adopt. Image credit to [23].

To implement Audi-Exchange, it is necessary to have a
fast and accurate hand-tracking algorithm for the computer
program to determine the location of the interactive part-
ner’s hand on an image. Hence, we base the hand tracking
functional unit of Audi-Exchange on an efficient hand track-
ing algorithm [23] utilizing MobileNet (a mobile-optimized
computer vision architecture) [15] and SSD (a computation-
ally efficient object detection method) [17]. We did not fine
modify or fine tune the hand tracking model by [23] during
our experiments. Running on a 2014 13” Macbook Pro with
a 2.6GHz dual-core Intel Core i5, we found the hand track-



ing algorithm to be able to process an average of 13 frames
per second (FPS) with an input image size of 320 by 180
pixels. Such a speed is sufficient for tracking a non-fast-
moving hand in real-time. Note that modern smartphones
are typically equipped processors that can outperform the
2014 Macbook Pro by significant margins and many even
come with dedicated neural processors that further speed
up computer vision and machine learning applications, as
is the case with the latest Apple iPhone (dubbed the “Neu-
ral Engine” ) and Google Pixel (dubbed the “Neural Core”).
As a result, the 13-FPS speed that we recorded represents a
bottom-line performance figure when hand tracking is run
on older, less capable devices. We show in fig. 2 some
test images of the hand tracking results as published by the
author [23], while our test results are detailed in sec. 5.1.

4.2. 3D Audio

After a hand is detected, we wish to transmit this in-
formation to the BVI user in the form of an audio signal.
To this end, we develop the 3D Audio module, which uti-
lizes the OpenAL API [3] to embed 3D location cues into
an arbitrary sound source. The method in which OpenAL
(and other similar APIs like Resonance Audio [18]) accom-
plishes this is through the head-related transfer function
(HRTF). The HRTF is a transfer function that takes in an
artificial source of sound, denoted as x(f), which is a func-
tion of frequency, and outputs separate channels of audio to
the left (denoted XL(f)) and right (denoted XR(f)) ears
of the listener to create directional sound [25]. When given
HRTFs HL(f, θ, ϕ) and HR(f, θ, ϕ) and the source audio
x(f), the output XL(f) and XR(f) can be computed as:

XL(f) = HL(f, θ, ϕ) ∗ x(f)
XR(f) = HR(f, θ, ϕ) ∗ x(f)

(1)

where θ, ϕ are known constants representing the azimuth
and elevation of the simulated audio source. Cartesian
(x, y, z) coordinates can be used too, though only the ra-
dial direction will be taken into account by the most HRTFs
with the distance determining volume. In this way, origi-
nal audio signals are filtered to carry directional cues to the
listener. We utilized this fact to help the user locate a vir-
tual audio source whose location corresponds to the actual
location of the hand being tracked. When given a 3D lo-
cation, the 3D Audio module plays a tone processed by the
HRTF so that it appears as coming from the given location
when the user hears it through stereo headphones. By relay-
ing visual information to the user through sound, 3D Audio
serves as a crucial part that makes it possible for the device
to communicate visual information to a BVI user. Based
on our testing, we found the 3D Audio module to consume
negligible computational resources when it processes and
plays spatial audio, making it compatible with the mobile-
optimized design of Audi-Exchange.

Figure 3. A graphic illustrating the Interaural time differences
(ITD) used in 3D audio software to help humans determine the
horizontal location of low-frequency sounds. Image source: Res-
onance Audio [18]

4.3. Audi-Exchange

Finally, we combine the hand tracking and 3D audio
modules to build the Audi-Exchange prototype. It works
as follows: in sequential order, a camera captures an im-
age, which is sent to the hand tracking module. After the
hand location is determined, a virtual sound source is cre-
ated with 3D audio to reflect the horizontal location of the
detected hand. As the user hears the 3D sound through
headphones, they acknowledge the location of the partner’s
hand in the real world. Then, the user moves their own
hand to the perceived location in an attempt to touch the
other person’s hand. The process repeats until the action
is completed as determined by the user. The flow of in-
formation from the BVI user’s perspective is illustrated in
fig. 4. By offering auditory feedback in response to visual
interactive cues (hand motion), Audi-Exchange repairs or
augments hand-eye coordination for VBI user to efficiently
hand objects over to or receive objects from another person.
Although the Audi-Exchange test system used in this paper
is set up for laptops and desktop computers, it is simple to
port the program to mobile devices by migrating to open-
source mobile-based computer vision and 3D audio algo-
rithms (see sec. 6). A concept design of the mobile-based
hardware is pictured in fig. 5.

Figure 4. Audi Exchange relays information about the location of
the interactive partner’s hand to the BVI user to guide the user
toward handing over to or receiving an object from another person,
who may be VIB or sighted.



Figure 5. Audi-Exchange Concept Design. By tracking the inter-
active partner’s hand on a smartphone and sending spatial-audio-
based interactive cues via wireless headphones, Audi-Exchange
helps the BVI with hand-related human-human interactions in a
lightweight and comfortable package.

5. Experiments

5.1. Hand Tracking Experiment

In this experiment, we wish to find how reliably a mobile
hand tracking program can pick up the interactive partner’s
hand. We designed four different test scenes to investigate
some realistic settings under which Audi-Exchange would
be used. They are categorized by the lighting conditions and
the object that the partner’s hand is holding. The categories
are 1. Regular Lighting / Empty Hand, 2. Regular Light-
ing / Holding Pen, 3. Regular Lighting / Holding Cup, and
4. Poor Lighting / Empty Hand. We show one image from
each test case in fig. 6. The first two test scenes happen most
frequently, with the interactive partner shown on the camera
trying to receive an object by extending an empty hand or
trying to give a small object with their hand. The third test
scene exemplifies situations in which the partner offers a
large object that occludes part of their hand when seen from
the camera’s perspective. The fourth test scene aims to see
how well the hand can be tracked when the partner’s hand is
not properly lit and light is coming from behind the partner.
All test scenes are filmed indoors with warm-colored LED
lighting. A smartphone camera is used captures a person
facing the camera from head-height, which simulates the
BVI user’s egocentric view. The person in view moves the
extended hand around throughout the video to create nat-
ural motion blur and location variations. The smartphone
camera used has a horizontal field of view of approximately
90◦ and an aspect ratio of 16 by 9, with the shutter speed
set to 1/50 of a second, ISO to 1200, and white balance to
“Auto”. All images are resized to 320 by 180 pixels before
being sent to the hand tracker.

To quantitatively evaluate tracking performance, we

record the number of true positives, false positives, and false
negatives for each test scene (see tab. 1). A true positive is
defined as when the hand offering or receiving an object
is detected or when both hands of the partner are detected
(which is a trivial issue, as the hand we’re interested in will
be elevated and extended forward, meaning it can be distin-
guished from the other hand by picking the topmost hand).
For similar reasons, exactly two closely overlapping bound-
ing boxes on the correct hand is also considered a true pos-
itive, as the issue can be trivially solved by treating it as
if two hands were detected. A false positive is defined as
when the hand of interest is not detected, but an irrelevant
object or the hand not of interest is. In the “False Posi-
tive (Wrong Hand)” column, we show the number of false
positive frames in which the false positive is due to detect-
ing only the irrelevant hand and no other objects. Lastly,
a false negative is defined by not detecting any object or
hand in a frame. Note that in all test cases, all frames in-
clude the hand of interest, so the true negative statistic is not
available (or, equivalently, it has 0 instances). For each test
case, there are 50 randomly selected frames from a video
sequence. A frame has an equal chance of having the per-
son and hand appear in the middle, left, and right parts of
the image. A human annotator determines whether a frame
is considered a true positive, false positive, false positive –
wrong, or false negative by observing the visual output of
the hand tracking algorithm. The annotator moves on the
next frame when ready. The quantitative result is shown in
tab. 1. Select qualitative hand tracking outputs are shown
in fig. 7. We include a video segment in the supplementary
materials demonstrating the hand tracking software used in
this experiment.

T.P. F.P. F.P. (Wrong Hand) F.N.
Test 1 46 3 2 1
Test 2 47 2 0 1
Test 3 21 22 15 7
Test 4 0 50 0 0

Table 1. The recorded instances of true positives (T.P.), false pos-
itives (F.P.), part of false positives that are due to detecting the
irrelevant hand (F.P. [Wrong Hand]), and false negatives (F.N.) for
each hand tracking test scene. A total of 50 frames were exam-
ined for each test scene. Tests 1-4 correspond to Regular Lighting
/ Empty Hand, Regular Lighting / Holding Pen, Regular Lighting
/ Holding Cup, and Poor Lighting / Empty Hand, in this order.

We found the hand tracking algorithm to be robust under
regular lighting conditions for tracking both the receiving
and giving hand poses in the “Empty hand‘ and “Holding
pen” test scenes. Even when a significant portion of the
hand is occluded by an object, which is the case for the
“Holding Cup” test scene, the algorithm was still able to
detect the hand of interest 42% of the time. If the hand of



Figure 6. Overview of the four test cases. From left to right: 1. Regular Lighting / Empty Hand, 2. Regular Lighting / Holding Pen, 3.
Regular Lighting / Holding Cup, and 4. Poor Lighting / Empty Hand. We choose frames where the subject and hand are in the center of
the image for clarity. Zoom in for better details.

Figure 7. Some examples of the visual output of the hand tracking algorithm. Each is annotated as True Positive, False Positive, False
Positive (Wrong Hand), or False Negative Classes. Note that a “False Positive (Wrong Hand)” image counts toward False Positive also.
Zoom in for more details.

interest was not detected, the other hand is detected 51.7%
of the time, which to some extent still reflects the location
of the hand of interest as the two hands usually appear at
nearby locations. In poor lighting, however, the algorithm
fails to reliably track the hand. Specifically, the unlit over-
head light in the room was picked up as a hand in all 50
frames tested. Another finding worth mentioning was that
tracking performance was insensitive to the on-camera lo-
cation of the hand. Hands appearing on the edges of a frame
are tracked with approximately the same accuracy as those
near the center. Based on our testing, we believe the mobile-
optimized hand-tracking algorithm [23] selected for this ex-
periment to be sufficiently reliable to locate hands in real-
time when the hands are properly lit and exposed.

Figure 8. An illustration of the setup for the 3D Audio Experiment.
“Speaker” and “ear” icons credit to Google.

5.2. 3D Audio Experiment

In this experiment, we wish to find how accurately a hu-
man can perceive the location of a computer-generated au-



dio signal through stereo headphones. We set up this exper-
iment so that a computer program first randomly selects one
of three horizontal directions: front, left, and right. When
a direction is selected, an exact angle is further generated
by drawing from a uniform distribution over ±15◦ from
the mean angle of that direction (15◦ for “right”, 90◦ for
“front”, and 165◦ for “left”). A graphical depiction of this
process is shown in fig. 8. Then, the program creates a
virtual 3D audio source with an azimuth of the angle previ-
ously chosen, an elevation of 90◦ (parallel to the ground),
and a radial distance of 1m. The virtual audio source plays
a 440Hz sine wave for 1.0 second, physically transmitted
through a pair of headphones worn over the ears of the test
subject. After the signal plays, the test subject enters the
perceived location of the audio source on the computer pro-
gram, after which the next virtual audio source is created
and the process repeats. We gather 50 data points, each con-
sisting of the source direction generated by the computer
and the source direction perceived by the human. The con-
fusion matrix is visualized below (see fig. 9). We include a
video segment in the supplementary materials demonstrat-
ing the test program and the computer-generated 3D audio.
If desired, the reader can experience a demo of the 3D au-
dio experiment by playing the video segment with stereo
headphones on.

Figure 9. Confusion matrix for the 3D Audio experiment. Rows
are indexed by computer-generated directions while columns are
indexed by human-perceived directions.

As the data in fig. 9 shows, a human is fully capable of
accurately discerning the direction of a computer-generated
3D audio signal when they are separated by different az-
imuth angles. In only 2 out of 50 trials have the human
subject incorrectly determined the direction of the gener-
ated signal, which translates to an accuracy of 96%. This
provides the insight that the 3D Audio module is a reliable

way to encode spatial information into a sound to allow a
listener to determine its virtual location. Spatial sounds are
also highly intuitive, as almost all people with regular hear-
ing use their two ears to locate sound sources in real life for
various purposes and 3D Audio is designed to simulate this
experience.

5.3. Audi-Exchange Experiment

The Audi-Exchange Experiment integrates both Hand
Tracking and 3D Audio to serve as the Audi-Exchange as-
sistive device prototype. This experiment (fig. 10) uses the
“Regular Lighting / Empty Hand” images that were pre-
viously used in sec. 5.1, but we further split them into
three classes, front, left, and right, based on the location
of the hand appearing in the image. In each trial, an im-
age is randomly drawn from the three directional classes
and fed into the hand detector. After that, a virtual audio
source is created at ground level and 1m in front of the
user with a horizontal location being proportional to that of
the detected hand such that the virtual horizontal location is
within [−1m, 1m]. Then, the virtual location is normalized
to have a distance of 1m so that all audio signals will have
equal volume regardless of the location. In other words, if
x, y ∈ [0, 1] is the horizontal and vertical location of the
hand on an image, then the location of the virtual sound
source (x′, y′, z′) is computed as:

(x̂, ŷ, ẑ) = ((x− 0.5) ∗ 2, 1, 0)

(x′, y′, z′) =
(x̂, ŷ, ẑ)

||(x̂, ŷ, ẑ)||
(2)

where positive x′ is the right, positive y′ is the front, and
positive z′ is the top. Note that the vertical location of the
hand is disregarded because we think horizontal location is
the most important piece of information to facilitate hand-
based interactions. We place the virtual audio source at
(x′, y′, z′) as computed in eq. 2, which plays a 440Hz sine
wave sound for 1.0 second through headphones. Then, the
test subject enters the perceived direction of the hand based
solely on sound and proceeds to the next trial when ready. If
the hand tracker fails to detect the hand, the program auto-
matically records a “not detected” response. For each trial,
we record the ground-truth direction of the hand and the
perceived direction of the hand. The data is showed in the
confusion matrix in fig. 11. The Audi-Exchange Experi-
ment is more challenging than the independent 3D Audio
and Hand Tracking experiments for two reasons. (1) Hand
tracking is not perfectly accurate, so the computed image
location of the tracked hand can be off. (2) When mapping
the image location into the 3D location for the virtual audio
source, the virtual location spans only 90◦ horizontally as
opposed to 180◦ (the case for the 3D Audio Experiment)
in an attempt to reproduce the actual azimuth direction of
the hand in the real world, so there are smaller perceptive



Figure 10. Illustration of the Audi-Exchange Experiment. The hand-tracking and 3D audio algorithms translate visual interaction cues of
an extended hand into a 3D audio signal for the BVI user. Camera image shown was cropped to better fit the page. “Camera”, “speaker”,
and “ear” icons credit to Google

Figure 11. Confusion matrix for the Audi-Exchange Experiment.
Rows are indexed by ground-truth directions while columns are
indexed by human-perceived directions.

differences among sounds coming from different virutal di-
rections. Despite these challenges, the test subject has cor-
rectly located the hand 78% of the time based on sound
alone. The high tested effectiveness of the Audi-Exchange
prototype strongly indicates that Audi-Exchange would be
feasible and effective as an assistive platform when used by
BVI individuals.

6. Porting to Mobile Devices

Although we tested the Audi-Exchange prototype on a
desktop computer, it can be updated and ported to mobile
computing platforms (e.g. smartphones) with relative ease.
The current hand tracking algorithm is already based on a

neural network architecture designed for mobile usage [15]
can be run in efficiently on smartphones. While the Ope-
nAL [3] library used in this paper is mostly used for desktop
applications, newer and more powerful spatial open-source
sound APIs exist that target mobile applications specifically.
Resonance Audio is an example [18]. Hence, we expect
porting the Audi-Exchange prototype to smartphones to be
a simple process, from where we can continue to develop
the Audi-Exchange assistive technology.

7. Conclusion
We have developed a working version of Audi-

Exchange, a mobile assistive technology that guides the
BVI when handing over and receiving objects from an-
other person with 3D sound cues. We have implemented
Audi-Exchange with a mobile-optimized neural network
(i.e. MobileNet + SSD [15, 17]) and OpenAL [3]. We tested
the system with images of a person using their hand to offer
and receive objects captured in front of a smartphone cam-
era and demonstrated that under proper lighting, the hand
can be reliably tracked and the user can accurately deter-
mine its location by listening to a corresponding computer-
generated 3D audio signal through stereo headphones. This
gives us confidence that blind-or-visually-impaired individ-
uals can use Audi-Exchange to better complete object ex-
changes with their hand. As the next step, we plan to con-
struct more in-depth experiments as well as update Audi-
Exchange to further improve and validate Audi-Exchange.
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