
Active Crowd Analysis for Pandemic Risk
Mitigation for Blind or Visually Impaired

Persons

Samridha Shrestha1,2, Daohan Lu1,3, Hanlin Tian1,3, Qiming Cao1,3, Julie
Liu1,2, John-Ross Rizzo3, William H. Seiple4, Maurizio Porfiri3, and Yi

Fang?1,2,3

1 NYU Multimedia and Visual Computing Lab, Abu Dhabi and New York
2 New York University Abu Dhabi, Abu Dhabi 129188, UAE

3 New York University, New York, NY 10012, USA
4 Lighthouse Guild, New York, NY 10023, USA

Abstract. During pandemics like COVID-19, social distancing is essen-
tial to combat the rise of infections. However, it is challenging for the
visually impaired to practice social distancing as their low vision hin-
ders them from maintaining a safe physical distance from other humans.
In this paper, we propose a smartphone-based computationally-efficient
deep neural network to detect crowds and relay the associated risks to
the Blind or Visually Impaired (BVI) user through directional audio
alerts. The system first detects humans and estimates their distances
from the smartphone’s monocular camera feed. Then, the system clus-
ters humans into crowds to generate density and distance maps from the
crowd centers. Finally, the system tracks detections in previous frames
creating motion maps predicting the motion of crowds to generate an
appropriate audio alert. Active Crowd Analysis is designed for real-time
smartphone use, utilizing the phone’s native hardware to ensure the BVI
can safely maintain social distancing.

Keywords: active crowd analysis, visually impaired, human detection,
crowd density, crowd distance, crowd motion, crowd-risk alert, pandemic
risk mitigation

1 Introduction

The World Health Organization estimates that there are about 39 million blind
and 246 million visually-impaired individuals in the world [5, 66]. Numerous
reports [28,36,38,63], have stated that even before the start of the current pan-
demic, low vision already posed significant challenges to the visually impaired
individuals in conducting their day-to-day activities. Recent surveys conducted
by the American Foundation for the Blind [10] and the Canadian Council for
the Blind [26] found that the COVID-19 outbreak profoundly exacerbated those
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existing hurdles for the BVI. These challenges included issues in public naviga-
tion, transport, and shopping all while avoiding crowds making social-distancing
difficult. BVI individuals face these barriers as they have to rely on physical
sensation significantly more than the normal-sighted in their everyday lives to
locate objects or navigate environments. This reliance on physical touch prevents
effective social distancing and puts the sightless at an elevated risk of contract-
ing viruses by being in the vicinity of infected individuals [67]. To ameliorate
the reduced perceptive range of the BVI and to mitigate the pandemic health
risks, in this paper, we propose Active Crowd Analysis, a system to augment
the BVI’s environment perception to detect nearby visible crowds and maintain
social-distancing in a more intuitive, safe, and independent manner.
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Fig. 1: Active Crowd Analysis System to detect crowds, generate density, dis-
tance, and motion maps to finally relay a risk alert to the BVI user

Active Crowd Analysis holistically integrates the density, distance, and the mo-
tion of the visible crowd in-front of a BVI person to evaluate the riskiness of
crowds and to help the user avoid crowds through audio warnings (Fig. 1). The
system is designed for use in a smartphone that is mounted in front of the BVI
person with a lanyard. Allowing for wider access, our system requires no special-
ized hardware except for a standard CPU/GPU and camera-enabled smartphone
along with a headphone for audio feedback. We recommend a bone-conduction
headphone in specific as such headphones do not obstruct the normal hearing
of a visually impaired person while still providing the necessary audio guidance
to avoid crowds. The system consists of a backbone feature network to extract
features from images from the smartphone camera which is passed to a human



Crowd Analysis for Pandemic Risk Mitigation 3

detector to detect crowds and create a crowd density map (Fig. 2). The bounding
box coordinates of the detected humans are then sent to a distance regressor net-
work to calculate the distances to detected individuals to create a distance map
(Fig. 2). Using the detected human and their distances from multiple frames,
the system finally generates a motion map (Fig. 2). Using information from the
three previous maps, a crowd-risk module then alerts the BVI user of any risk
from visible crowds nearby through the bone-conduction headphones as spatial-
ized directional audio (Fig. 6). The system uses computationally-light neural
networks that were designed for real-time smartphone use [59] to provide an
active and reliable risk mitigation solution for the BVI during a pandemic.

Fig. 2: Crowd-Risk Alert classifies risk-inducing crowds and sends the BVI a
concise verbal alert with spatial audio.

1.1 Contributions

In short, our contributions can be summarized as follows

• Crowd Density Analysis: Calculates the density of the visible crowd in-front
of the BVI individual using an efficient density-based clustering algorithm
for crowd-density evaluation.

• Crowd Distance Analysis: Calculates the distance to each detected human
in-front of the BVI person for crowd-distance evaluation.

• Crowd Motion Analysis: Calculates the perceived change in distance to the
detected humans to detect motion for crowd-motion evaluation.

• Crowd Risk Analysis: Integrates the risk scores from the density, distance,
and motion evaluations to calculate an aggregated risk that is relayed to the
BVI user through spatialized 2D audio.

2 Needs of the BVI during a Pandemic

Surveys in [2, 10, 13, 26] stated that one of the paramount needs of the visually
impaired during pandemics was maintaining social-distancing while approach-
ing crowded areas where there is a greater risk of contracting the pandemic
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virus. During a pandemic, the BVI not only have to minimize physical touch-
ing for environment exploration but also stay away from crowds to avoid con-
tracting contagions. Therefore, the BVI require real-time information about the
surrounding environment such as the existence of crowds to actively avoid them
and prevent the transmission of the disease. [11,12,33,49,52] also show that the
BVI community is more receptive to lightweight and small wearable solutions
with ubiquitous availability (i.e. smartphones) that enable them to perform their
daily activities safely, reliably, and independently.

3 Related Work

3.1 Related Assistive Technology for the BVI

Most hardware-based assistive technology solutions for the BVI have had dire
adoption rates [23, 44, 57] owning to significant drawbacks that include high
cost, steep learning curves, and heavy and unwieldy hardware. The most widely
adopted commercial sensory augmentation devices generally cost upwards of
thousands of US dollars due to the high cost of specialized hardware [20,25,30,
32,45,65]. Other hardware-based assistive devices often cause discomfort to the
user after long use due to carrying additional hardware such as batteries or cam-
eras. Besides, such existing assistive technology solutions were not designed to
address the pandemic-specific needs of the BVI. Most assistive technologies focus
on limited applications like outdoor navigation [29, 37, 41, 42, 57]. Vision substi-
tutes [4, 6, 15,35] on the other hand do not provide health and safety assistance
to the BVI in the context of a pandemic. In contrast, software solutions that
run on smartphones are more affordable and accessible for the BVI and include
applications like Microsoft Seeing AI [46] and BlindSquare [3]. Unfortunately,
these technologies also do not address pandemic risk reduction for the BVI like
helping them to maintain social-distance from crowds. These systems also po-
tentially fail due to the lack of onboard visual processing and the dependency
on online visual computing platforms (i.e. Microsoft Seeing AI).

3.2 Related Work in Crowd Density, Distance, and Motion Analysis

Human Density Estimation and Motion Tracking: Previous work in crowd
density has necessarily involved real-time human detection and motion track-
ing. [34] use the You Only Look Once V3 (YOLO-V3) object detection al-
gorithm [54] to detect people and implemented background-subtraction with
Gaussian Mixture Models (GMM) and contour heat-maps to analyze crowd den-
sities. [62] used the RGB color features of an image and similar background sub-
traction between frames to filter background noise to detect and track moving
objects in video scenes. However, these methods are only applicable to static
video surveillance since background subtraction is inapplicable when the camera
is moving. Therefore, these methods for people detection and density analysis
would fail when a BVI user is moving around. [9] also implement a background
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subtraction method as a preprocessing step to detect silhouettes of people in
still images using a graph-cut segmentation plan but cannot be used in real-
time video sequences. [58] proposed an improved algorithm for object motion
estimation in videos where they use GMMs for background subtraction and
noise cancellation along with an optical flow algorithm to track objects. Back-
ground subtraction methods as mentioned previously restrict the BVI user to
a stationary position. Besides, background subtraction methods for videos have
deteriorated performance if the person(s) detected in the image is not moving
since the foreground selection is based on the movement of the target (human)
and a static background. Other methods for tracking people used R-CNN [22]
and Faster R-CNN [8] object detection networks to detect people and Euclidean
distance based object association between subsequent frames to track people.
These methods generate accurate object detections. However, R-CNN [22] has
a multi-stage region proposal selective search algorithm that generates 2000 re-
gions to be fed into the neural network classifier while Faster R-CNN [55] still
uses a region proposal network which drastically reduces the object detection
speed. This means these methods are not suitable for real-time crowd detection
in smartphones or embedded-devices.

Human Distance Estimation: Crowd-distance estimation is linked to
depth estimation and segmentation of objects in images. Depth segmentation
methods usually rely on stereo images from two cameras where the distance in-
formation is only calculable for the overlapping fields of view between the cam-
eras [51]. For example, [18] used a scene-geometry based method to use depth
cues from stereo images to track moving pedestrians from a moving platform.
However, stereo images imply a dual-camera requirement which is undesirable
as the BVI user would require two smartphone cameras set up infront of them
or multiple-camera embedded devices. For distance estimation from monocular
images, various works have been documented. [56,64] use an object distance es-
timation algorithm for monocular images based on inverse-perspective-mapping
(IPM) of the camera’s 2D image into a bird’s eye view coordinate using the cam-
era parameters (focal length, height, etc). Despite working from a single camera,
IPM has significant disadvantages as it fails to accurately predict distance for
objects on the borders of the image, or curved surfaces. IPM also requires con-
stant calibration (such as the white markings on a road) and a static height
for the camera [64] which cannot always be ensured for our specific use with
the BVI. [24] proposed another monocular image distance estimation method
that used a Support Vector Regressor on the bounding box width and height
to predict the distance to the object while in [27], the authors used DistNet to
predict the distance from the bounding box features and used a CNN based ob-
ject detection model (YOLO) to detect the objects themselves. [68] provided an
improved and novel method to use features extracted by a neural network such
as Resnet or VGG [61] to directly estimate the distance to the detected object.
However, these approaches are not suitable for real-time applications on mobile
systems such as smartphones due to their excessive memory and computation
requirements.
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4 Active Crowd Analysis

Fig. 3: Human detection and distance estimation network

Active Crowd Analysis is a smartphone-based assistive technology designed for
the smartphone’s limited memory to achieve real-time human detection, track-
ing, and distance estimation, traditionally reserved for GPU-based desktop com-
puters. Active-Crowd Analysis identifies and alerts the BVI user of risk-inducing
events related to crowds with two sequential modules, Crowd Analysis, and
Crowd-Risk Alert. First, the Crowd Analysis module detects all visible peo-
ple on the camera and clusters people into crowds to generate the crowd density
map, crowd distance map, and crowd motion map, as depicted in Fig. 2. The
Crowd-Risk Alert module then analyzes the information from the crowd density,
distance, and motion analysis to estimate the ”riskiness” of crowds per advised
health guidelines, such as social distancing [7]. The system finally relays a sum-
mary of the crowd’s risk analysis (i.e. the level of risk) to the BVI user through
a spatialized 2D audio.

For real-time processing on a mobile phone, we develop a fast detection algo-
rithm as shown in Fig. 3 to compute the locations and distances of people on
the smartphone camera. It is realized with 1). designing a lightweight feature
extractor to simultaneously acquire foundational visual features for different vi-
sual tasks in Scene Crowd Analysis 2). designing a shared people-object detector
to detect both people and objects simultaneously for Crowd detection, distance,
density, and motion map generation. An overview of the people detection al-
gorithm is shown in Fig. 2. The shared feature extractor is modeled based on
MobileNet-V2 [59] and further simplified for real-time inference in smartphones.
The people-object detector, which classifies the feature maps from the shared
feature extractor, is based on SSDLite [60], an object detection algorithm specifi-
cally optimized for mobile devices. The detector identifies multiple objects in the
image including person and non-person objects, but the Crowd Analysis filters
out all the non-human detections.
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4.1 Human and Crowd Detection

Detecting humans in the smartphone camera feed is an object detection task.
This computer vision task is relatively easy given that many object detection
algorithms such as SSD [40] and YOLO [53] can reliably pick up people and
objects in an image. However, we require object detection systems that can
reliably detect humans in real-time when operated from smartphones. We use a
backbone feature extraction network that is based on the MobileNet-V2 network
[59] and a bounding box regressor and classification network based on SSD Lite
[60]. The outputs from the backbone feature extractor are of sizes 20*20*96,
10*10*1280, 5*5*512, 3*3*256, 2*2*256, and 1*1*64 with attached 4, 6, 6, 6, 4,
and 4 anchor boxes for each output feature map respectively. We also use a
non-max suppression threshold of 0.5 to remove multiple detections of the same
object. Our loss function is a weighted combination of losses from the object
localization (loc) and classification tasks (cls) based on the multi-box detection
for multiple classes used in [17,60].

L(x, c, l, g) =
1

N
(Lcls(x, c) + αLloc(x, l, g)) (1)

where N is the number of matched default box priors. The loss is set to 0
if N is also 0. x is an indicator variable that is set to 1 if the default prior box
is matched to the determined ground truth box and 0 otherwise. c is the class
confidence score, l and g represent the predicted and ground truth bounding
box parameters (center offsets; bounding box width and height) respectively.
Lloc is the localization loss which is the smooth L1 loss between the predicted
(l) and ground-truth box (g) parameters. α is a hyper-parameter that balances
the weights of the losses and is determined through cross-validation. Lcls is
the classification Softmax loss computed over multiple classes. However, after
detecting an object, we drop all classes except for the person class in our human
detection pipeline.

Fig. 4: Illustrations of Crowd Density Map, Crowd Distance Map and Crowd
Motion Map.

4.2 Crowd Density Analysis

To create density maps, we use bounding-box parameters (center : (x, y), width :
w, height : h) generated by the human detection module for each detection. A
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distance regressor network uses the bounding-box w and h to predict the dis-
tance, d to each detected human. We then use the bounding-box centers and
distances, (x, y, d) to represent individual persons and form centroid clusters
based on 3D euclidean distances between bounding-box centers using a recur-
sive density-based clustering algorithm, DBSCAN [19]. DBSCAN is well suited
to our clustering task compared to an algorithm like K-means clustering which is
affected by noise and requires the number of clusters apriori. DBSCAN does not
require the number of clusters as a hyper-parameter input, instead, it requires the
epsilon (eps) parameter which is the maximum distance between two points in
the same cluster. The most suitable eps was experimentally determined to be 18
after re-scaling the dimensions of the input images to [0, 100] for increased gener-
alizability. To generate the density maps, we employ a GMM model for contour
heat-map similar to what was used in [34] albeit without using any background
subtraction method. The number of components in the GMM model is simply
the number of crowd-clusters that was previously computed with DBSCAN.

4.3 Crowd Distance Analysis

For crowd distance map, it is difficult to directly obtain the distances to detected
objects because most object detection algorithms do not compute the distance
of the detected objects to the camera. To acquire the distances to humans, we
use the proportional geometric relationship between the height and the width of
the bounding box to the actual size of the person. Such distance estimation of
people on a monocular image is intuitively justified as humans also have well-
defined shapes when captured by a camera, so their on-camera appearance (size
and look) gives a good estimate of their distances. We use a fully-connected deep
neural network to regress for the distance to detected human trained on labeled
ground-truth data. As shown in Fig. 3, we predict the location and size of the
bounding-box and use the width and height of the predicted bounding box to
calculate the distance to the detected humans. The Distance regressor network
is a deep neural network with five fully connected layers of size 2, 6, 4, 2, 1,
experimentally determined to be optimal after hyper-parameter optimization.
The network has LeakyRELU activation (slope = −0.01) functions between all
subsequent layers except for the final layer which has a Softplus activation en-
suring all final distance predictions are positive. We train our distance regression
network with a supervised Mean Squared Error loss function presented below:

MSE(Linear) :
1

N

∑
d∈N

∥∥di − dgti ∥∥2 (2)

where di is predicted distance and dgti is the ground-truth distance to the
detected human. The network outputs a distance for every detected human in
the input image and assigns the distance to the bounding box center.
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4.4 Crowd Motion Analysis

After we detect humans and calculate the distances to each human and cluster
center, we can start to track the motion of each detected human or cluster cen-
ter. In general pedestrian settings, people move relatively slowly as viewed on
a camera, so there is a considerable frame-to-frame overlap of their locations.
Thus, by comparing the distances of the tracked cluster centers or humans from
frame to frame, we can reliably estimate the motion of such crowds or humans
as viewed from the BVI user’s smartphone camera. By calculating the change
in the distance values between consecutive frames, we can calculate the motion
of crowds. This velocity will indicate whether detected humans or crowds are
moving towards or away from the BVI user and can be used to create the mo-
tion map. Motion tracking, however, is essential for estimating motion between
frames. To track the detected humans between subsequent frames, we employ a
simple bounding box centroid tracking algorithm that links previously-detected
bounding boxes with newly detected bounding boxes with the smallest euclidean
distance. To suppress noisy detections, we only start tracking humans once they
have been visible for a small number of frames and drop missing human de-
tections once they have been absent for several frames (set to 50 in our case).
The centroid tracking algorithm is discussed in more detail in Section 1 of the
supplementary material. (Sup. Sec. 1)

Fig. 5: Active Crowd Analysis generates a straightforward risk level for detected
crowds, where a high-risk level would trigger an audio alert. The closer or denser
a crowd is, the more risky it is considered. The crowd on the top left is considered
the least risky and the crowd on the top right is considered the risky.
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4.5 Crowd Risk Analysis

To evaluate the crowd-risk, we group all people into crowds based on physical
proximity. Each person is represented as a point (x, y, d, v) in 4-dimensional space
representing their 2D location, distance, and velocity. People are grouped into
crowds with the same density-based clustering algorithm, DBSCAN [19], based
on their proximity in the 4-dimensional representational space. The resulting
crowd is represented by its size (number of people) s, average distance d, and
motion v (signed real-number velocity). Then the mathematical formula below
is used to evaluate the riskiness r(c) of each crowd c (Detailed in Sup. Eqn. 9):

c ≡ s, d, v
r(c) = f(s, d, v)

(3)

where r : R3 → R1 ∈ (0, 1) is a function that converts the features of a
crowd into a real number representing the risk of the crowd; the crowd feature
c ≡ s, d, v is a three-dimensional vector consisting of its size, distance, and
motion. The overall riskiness R(c) is the sum of individual riskiness of crowds:

R(c) =
∑
c∈C

r(c) (4)

where C is the set of all visible crowds. The individual crowd-risk function r
is defined according to social distancing guidelines [7] such as considering 6 feet
as the threshold for elevated risk (Sup. Sec. 2). Although other risk evaluation
metrics that conform to the official advisory for different pandemics can also
be selected. Once the overall crowd-risk is computed, our system sends different
levels of audio-risk-alerts to the BVI user as shown in Fig. 5.

4.6 2D Audio Feedback

Horizontal Plane

Left

“HIGH RISK”

Right

θ

Fig. 6: 2D spatialized audio feedback
system (Google Images CC License)

For every crowd deemed risk-inducing,
our system sends a spatialized au-
dio alert with the crowd-risk status
(e.g. ”Moderate Risk”, ”High Risk”)
so that the BVI know the level
of risk associated with any nearby
crowd and its general direction. The
audio spatialization is implemented
through open-sourced 3D sound-APIs
like OpenSL, for mobile systems like
Android [14] or through OpenAL
[50] for Apple phones. The efficacy
of spatial-directional audio in bone-
conduction headphones has been well
studied in [43] where participants
were able to determine the direction of the audio source with bone-conduction
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headphones on par with normal headphones. Studies have also shown that blind
people are more sensitive to such binaural audio location cues than sighted peo-
ple [48]. As demonstrated in Fig 6, after the cluster center of the crowd is com-
puted, the offset from the image center to the cluster center is calculated in
Euclidean metrics. To ensure a uniform spread of audio sources in-front of the
user regardless of the input image size, we use the image previously re-scaled
to scale of [0, 100]. Since we know the distance to the cluster center, we can
calculate the center deviation angle θ ≡ arcsin( cluster to img center offset

distance to crowd ), which
is used by the spatial-sound API to generate a 2D directional audio. Finally, the
severity of the crowd-risk is also conveyed through the intensity or volume of the
audio alerts (i.e. higher risk equates to louder alerts).

5 Experimental Setup and Evaluation

Our tests are run in desktop environments (Sup. Sec. 6), however, our feature
extraction module based on MobileNet-V2 [59] has real-time performances in
smartphones. [31] experimentally showed that a quantized MobileNet model
can run under 25ms at 40 fps with a Snapdragon 845 SoC enabled Qualcomm
Hexagon Chipset smartphone. [31] and [39] also provide benchmarked object-
detection performances for both Android and iOS smartphones based on other
hardware chipsets as well.

5.1 Human Detection Performance

Dataset Setup: We train our human detection network on the PASCAL Vi-
sual Object Classes Challenge (VOC) 2007 and VOC 2012 dataset. The trained
networks are tested on the PASCAL VOC 2007 test dataset. VOC 2007 and
VOC 2012 have 9963 and 11540 images respectively with objects from over 20
different classes. Since we are concerned with human detection, we only report
the overall mean average precision performance (mAP) and the results for the
person class for object detection and localization task.

Table 1: Comparison of different models for human detection on the VOC 2007
test-set. All models were trained on the VOC 2007 and 2012 dataset. The frame
rate is calculated for input images of size 500x375 pixels

Model
mAP

(Overall)
mAP

(Person)
fps

(GPU)
fps

(CPU)
Model Size

(MB)

Our Network
with SSDLite 320x320

0.7814 0.7403 125±4 7±2 25.5

VGG16
with SSD 300x300

0.9045 0.8751 60±5 3±2 201

Efficient B-Net
with SSD 300x300

0.8166 0.7679 79±1 5±2 97.1



12 S. Shrestha et al.

Results: Our proposed network, despite having a low mean average precision
(mAP) for the people class detection, outperforms all other models in speed as
frames per second (fps) and memory usage in both CPU and GPU settings.
Our network sacrifices some accuracy for higher speed and lower memory usage,
which is paramount if the network is used for detection in smartphones. The
MobileNet-v2 backbone in our network has also been demonstrated to achieve
a real-time performance of 40 fps in a GPU enabled-smartphone [31, 59] with
model size reduced to 4.3MB.

5.2 Distance Regression Performance Analysis

Dataset Setup: We train and evaluate our distance regressor networks on
the KITTI Vision Benchmark Suite for 2D Object Detection [21], which has
7,481 training and 7,518 test images. Since we are only concerned with human-
detection, we drop all classes except for the Pedestrian class. The Cyclist and
Person Sitting classes are also dropped as their distributions deviate from that
of the Pedestrian class when modeled using the bounding box heights and widths
(Sup. Sec. 3 Fig. 1, Fig. 2). This leaves us with 1779 images and 4487 human
instances. Since the test set is restricted to the KITTI Vision servers, we further
divide the 1779 images training set into train and validation subsets with an
80 : 20 split respectively. The images themselves are unnecessary for training
the distance regressor as we only require the bounding box coordinates. We
train the distance regressor network using the ADAM optimizer with a learning
rate of 0.001 for 200 epochs with a batch size of 128. We also use a scheduler to
reduce the learning rate to 10% of the previous rate if the validation loss plateaus
for five epochs. The Support Vector Regressor (SVR) used for evaluation results
in table 2 is based on the work done by [24]. The SVR is trained and evaluated
on the same training and validation subset as the neural network regressor. The
SVR is set up to use a radial basis function kernel with the hyper-parameter C
set to 1.0 and epsilon set to 0.1.
Evaluation Metrics: Since our aim is to accurately predict the distances to the
detected humans, we measure the performance of the distance regression models
with metrics used in [16, 68], normally reserved for depth estimation. These
metrics include the Mean Squared Error (MSE ), the root of the mean squared
error (RMSE ), the log root mean squared error (RMSElog), the absolute relative
difference in distances (Abs Rel), and the squared relative difference in distances
(Squa Rel) (Sup. Sec. 4).
Results: Fig. 7 and Table 2 demonstrate the effectiveness of our regression neu-
ral network compared to the SVR proposed in [24]. The experiments in Fig. 7b
show the reliability of the distance predictions for a detected human approach-
ing the camera. The SVR was found to be inaccurate for distances closer than
6 meters. For the experiment in Fig. 7b, the neural network regressor had a
RMSE error of 0.4610 while the SVR had a RMSE error of 6.7508. However,
Fig. 7a shows that both the SVR and the neural network regressor lose distance
prediction performance as distances get longer since the detected bounding box
shape gets smaller. Deterioration for distance estimation performance was also
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Table 2: Distance prediction performance comparison for our validation subset
split of the pedestrian class in the KITTI–object-detection dataset

lower is better
Regressor

MSE RMSE RMSElog Squa Rel Abs Rel

Neural Network Regressor 6.0088 2.4513 0.1304 0.3911 0.0788

Support Vector Regressor 7.0425 2.6538 0.1217 0.3215 0.0782

(a) MSE over different distances for Neu-
ral Network and SVR.

(b) Distance predicted by Neural Network
compared to ground truth for a human
approaching the camera

Fig. 7: Distance Regressor Performance

observed in [64, 64, 68]. This is not a concern for us since we put more empha-
sis on how the models perform for short distances within 7 meters where social
distancing guidelines might come into action.

5.3 Crowd Motion Tracking Performance Analysis

Dataset Setup: To evaluate our crowd-motion analysis setup, we make use of
the 2016 Multiple-Object-Tracking Benchmark [47] (MOT16 ) training subset.
We use the MOT16 -02 subset of the MOT16 data to evaluate different human
detection backbone networks as reported in Table 3. We only consider the pedes-
trian class with a visibility ratio of more than 0.7 in this subset for evaluation
and drop all non-pedestrian classes from our test set. We use the MOT 1602
train subset as the testing subsets are only available for server evaluation on
all classes explicitly. This subset contains a video sequence of 600 images of
1920x1080 resolution. The MOT benchmarks we report in table 3 are based on
this subset.
Evaluation Metrics: Our primary objective in crowd-motion analysis is to
measure the motion (changing distance) of crowds and individuals from the BVI
user. To accurately calculate this motion, we need to track the detected humans.
Therefore, we use the CLassification of Events, Activities, and Relationships
(CLEAR) metrics [1] for the task of Multiple Object Tracking [47] (MOT ) to
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Table 3: Comparison of the object tracking metrics on the pedestrian class of the
MOT 2016-02 subset given backbone networks and SSD detectors of different
input sizes. (Detection score threshold was set to 0.65 for all models)

higher is better lower is better
Model

MOTA(%) MOTP(%) MT(%) ML(%) FP FN IDsW

Our Network with
SSDLite 320x320

8.1 28.9 4.65 76.74 377 3378 12

VGG
with SSD 300x300

4.5 27.8 5.26 73.68 950 3302 29

Efficient Net b3
with SSD 300x300

7.3 28.6 5.26 81.57 563 3495 13

benchmark the human-motion tracking performance. The CLEAR metrics in
Table 1 include standardized metrics such as the Multiple Object Tracking Ac-
curacy (MOTA) and the Multiple Object Tracking Precision (MOTP) (Sup. Sec.
5). Additional tracking metrics also include the Mostly Tracked (MT ), Mostly
Lost(ML), False Positives (FP), False Negatives(FN ), and Identity switches
(IDsW ) (Sup. Sec. 5).
Results: Table 3 shows that our backbone network is the most suitable model
for the human tracking task required to create the motion maps in Fig. 4 as our
network has the highest MOTA and MOTP. However, these metric scores should
not be alarming since the MOT16 benchmark contains excessive detectable ob-
jects in each frame with frequently occluded paths while even state of the art
methods only achieved around 33.7 % MOTA in the MOT16 testset [47].

6 Conclusion

Given that previous research and commercial solutions designed to aid the BVI
community do not take health risks associated with a pandemic into account, in
this paper we have presented and demonstrated the efficacy of an active crowd
analysis system to help mitigate these pandemic-related health risks for the BVI.
Our smartphone-based system combines crowd density, distance, and motion
analysis to detect the risks associated with nearby crowds and relay this risk to
the BVI individual through a directional 2D audio. Active Crowd Analysis, in ag-
gregate, enables such sight-impaired persons to maintain a safe physical distance
from other humans or crowds meeting the official social distancing guidelines to
avoid the spread of contagions during a pandemic.
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